They simply will try to please the clients by doing everything in their power to finish the job. So, they put a lot of pressure on the drivers to finish the job. So, the drivers then sometimes will override their limits by using the overriding keys and they’re just working off charts thinking they can finish the job.

“They put a lot of pressure on the drivers to finish the job so the drivers will sometimes override their limits.”

“…there’s a disconnect between operator training requirements and what is current best practice.”

“It comes down to communication, to me that is vital.”

They simply will try to please the clients by doing everything in their power to finish the job. So, they put a lot of pressure on the drivers to finish the job. So, the drivers then sometimes will override their limits by using the overriding keys and they’re just working off charts thinking they can finish the job.

“They put a lot of pressure on the drivers to finish the job so the drivers will sometimes override their limits.”

“…there’s a disconnect between operator training requirements and what is current best practice.”

“It comes down to communication, to me that is vital.”

Preventing crane safety incidents in the construction industry

Construction Work Health and Safety Research @ RMIT
May 2020

This project was funded by the NSW Government’s Centre for Work Health and Safety and SafeWork NSW also contributed to the work, reviewed the document and approved for publication.

rmit.edu.au/research/health-safety-research
Purpose of this guide

Crane incidents are a critical issue in construction operations. They are often preventable and can result in significant injury, death, and financial losses. The use of cranes in construction operations is widespread, and it is essential to understand the factors contributing to crane safety incidents.

The crane safety incident causation model

A crane safety incident causation model was developed to identify the factors contributing to crane safety incidents in the Australian construction industry. The model is designed to help in understanding the factors contributing to crane safety incidents. It is important to note that these factors do not occur in isolation and can affect each other. The model is broken down into three layers:

1. **Outer layer**: originating influences, which are the factors that contribute to the industry at large. These factors include regulatory, organisational, and community expectations.
2. **Middle layer**: shaping factors, which are the factors that shape the immediate incident circumstances. These factors are broken down into industry context factors, labour-related factors, and site factors.
3. **Inner layer**: immediate incident circumstances, which are the factors that contribute to the actual incident. These factors include worker factors, job requirements, and the management of the incident.

How to use the model

The crane safety incident causation model can be used as a tool to support investigations into the factors contributing to crane safety incidents in the construction industry. It can help identify critical factors and provide a framework for investigating crane safety operations in construction workforces.

Key findings

- **Regulatory factors**: Authorising officer, permits and standards, non-compliance with industry standards and regulations.

Originating influences

<table>
<thead>
<tr>
<th>Commercial factors</th>
<th>Crane demands</th>
<th>Day/night shift working</th>
<th>Procurement management</th>
<th>Performance contracting</th>
<th>Principal contractor's expectations</th>
<th>Transboundary pressures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry context factors</td>
<td>Adapting property owners' community expectations</td>
<td>Ageing crane fleet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labour-related factors</td>
<td>Crane contractor's experience</td>
<td>Crane: safety in design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site management factors</td>
<td>Change of plan/circumstances</td>
<td>Crane safety documentation too long</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site factors</td>
<td>Change of plan/circumstances</td>
<td>Crane safety documentation too long</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work factors</td>
<td>Change of plan/circumstances</td>
<td>Crane safety documentation too long</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Immediate incident circumstances

<table>
<thead>
<tr>
<th>Materials/equipment factors</th>
<th>Crane for work that is being performed</th>
<th>Loaded being carried too heavy</th>
<th>Level ground too soft</th>
<th>Low ground too soft</th>
<th>No flat place due to reflective of situation</th>
<th>Operating unstable crane</th>
<th>Structural/mechanical failure of crane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site factors</td>
<td>Change of conditions</td>
<td>Crane located above underground services</td>
<td>Crane ejection</td>
<td>Crane being used off the rails</td>
<td>Crane being used too far from the operator</td>
<td>Crane being used in unstable weather</td>
<td>Crane being used with unacceptable weather conditions</td>
</tr>
<tr>
<td>Worker factors</td>
<td>Incidents of site that are not identified</td>
<td>Lack of identified hazards</td>
<td>Lack of control of hazards</td>
<td>Non-compliance with manufacturer's instructions</td>
<td>Non-compliance with legislation</td>
<td>Overload safety technology</td>
<td>Underload with site plant being operated</td>
</tr>
</tbody>
</table>
