Recycling biosolids to make sustainable bricks

How can you recycle the world’s stockpiles of treated sewage sludge and boost sustainability in the construction industry, all at the same time? Turn those biosolids into bricks.

Biosolids are a by-product of the wastewater treatment process that can be used as fertiliser, in land rehabilitation or as a construction material.

Around 30% of the world’s biosolids are stockpiled or sent to landfill, using up valuable land and potentially emitting greenhouse gases, creating an environmental challenge.

Now a team at RMIT University in Melbourne, Australia, has demonstrated that fired-clay bricks incorporating biosolids could be a sustainable solution for both the wastewater treatment and brickmaking industries.

Published this month in the journal Buildings, the research showed how making biosolids bricks only required around half the energy of conventional bricks.

As well as being cheaper to produce, the biosolids bricks also had a lower thermal conductivity, transferring less heat to potentially give buildings higher environmental performance.

The EU produces over 9 million tonnes of biosolids a year, while the United States produces about 7.1 million tonnes. In Australia, 327,000 tonnes of biosolids are produced annually.

The study found there was a significant opportunity to create a new beneficial reuse market - bricks. 

About 5 million tonnes of the biosolids produced in Australia, New Zealand, the EU, US and Canada currently go to landfill or stockpiles each year. Using a minimum 15% biosolids content in 15% of bricks produced could use up this 5 million tonnes.

22 January 2019

Share

Associate Professor Abbas Mohajerani with a biosolids brick. Associate Professor Abbas Mohajerani with a biosolids brick.

Lead investigator Associate Professor Abbas Mohajerani said the research sought to tackle two environmental issues – the stockpiles of biosolids and the excavation of soil required for brick production.

“More than 3 billion cubic metres of clay soil is dug up each year for the global brickmaking industry, to produce about 1.5 trillion bricks,” Mohajerani, a civil engineer in RMIT’s School of Engineering, said.

“Using biosolids in bricks could be the solution to these big environmental challenges.

“It’s a practical and sustainable proposal for recycling the biosolids currently stockpiled or going to landfill around the globe.”

The research examined the physical, chemical and mechanical properties of fired-clay bricks incorporating different proportions of biosolids, from 10 to 25%.

The biosolid-enhanced bricks passed compressive strength tests and analysis demonstrated heavy metals are largely trapped within the brick. Biosolids can have significantly different chemical characteristics, so the researchers recommend further testing before large-scale production.

The biosolids bricks are more porous than standard bricks, giving them lower thermal conductivity.

The research also showed brick firing energy demand was cut by up to 48.6% for bricks incorporating 25% biosolids. This is due to the organic content of the biosolids and could considerably reduce the carbon footprint of brick manufacturing companies.

The results of a comparative Life Cycle Assessment and an emissions study conducted as part of the research confirmed biosolids bricks offered a sustainable alternative approach to addressing the environmental impacts of biosolids management and brick manufacturing.

The research, funded by RMIT University, Melbourne Water and Australian Government Research Training Program scholarships, is published in the “Green Building Materials Special Issue” of Buildings (January 2019, DOI: 10.3390/buildings9010014).

For images, interviews and general media queries: Gosia Kaszubska, +61 3 9925 3176, +61 417 510 735 or gosia.kaszubska@rmit.edu.au.

About Biosolids

  • Biosolids are derived from wastewater treatment, mainly a mix of water and organic materials that are a by-product of the sewage treatment processes.
  • The treatment process to produce biosolids stabilises them by reducing organic matter and micro-organisms to make them safe to beneficially use in a variety of applications.
  • Stockpiled biosolids normally contain between 50 to 90% solids and resembles soil.
  • In 2017 Australia produced about 327,000 dry tonnes of biosolids.
22 January 2019

Share

Subscribe to RMIT NewsSubscribe
Flag Image One Flag Image Two

Acknowledgement of Country

RMIT University acknowledges the people of the Woi wurrung and Boon wurrung language groups of the eastern Kulin Nation on whose unceded lands we conduct the business of the University. RMIT University respectfully acknowledges their Ancestors and Elders, past and present. RMIT also acknowledges the Traditional Custodians and their Ancestors of the lands and waters across Australia where we conduct our business.

More information