Snooze mobiles: how vibrations in cars make drivers sleepy

Snooze mobiles: how vibrations in cars make drivers sleepy

New research has found the natural vibrations of cars make people sleepier, affecting concentration and alertness levels just 15 minutes after drivers get behind the wheel.

With about 20 per cent of fatal road crashes involving driver fatigue, RMIT University researchers hope their findings can be used by manufacturers to improve car seat designs to help keep drivers awake.

Professor Stephen Robinson said the effects of physical vibration on drivers were not well understood, despite growing evidence that vibration contributes to feelings of sleepiness.

“We know 1 in 5 Australians have fallen asleep at the wheel and we know that drowsy driving is a significant issue for road safety,” Robinson said.

“When you’re tired, it doesn’t take much to start nodding off and we’ve found that the gentle vibrations made by car seats as you drive can lull your brain and body.

“Our study shows steady vibrations at low frequencies - the kind we experience when driving cars and trucks - progressively induce sleepiness even among people who are well rested and healthy.

“From 15 minutes of getting in the car, drowsiness has already begun to take hold. In half an hour, it’s making a significant impact on your ability to stay concentrated and alert.

“To improve road safety, we hope that future car seat designs can build in features that disrupt this lulling effect and fight vibration-induced sleepiness.”

Led by chief investigators Associate Professor Mohammad Fard and Professor Stephen Robinson, the research team tested 15 volunteers in a virtual simulator that replicates the experience of driving on a monotonous two-lane highway.

The simulator was set up on a platform that could be vibrated on different frequencies, with the volunteers tested twice - once with vibrations at low frequencies (4-7Hz) and once with no vibration.

The tiredness induced by vibration makes it psychologically and physiologically harder to perform mental tasks, so the body’s nervous system activates to compensate, leading to changes in the heartbeat.

By looking at the volunteers’ heart rate variability (HRV), researchers were able to gain an objective measure of how drowsy they were feeling as the 60-minute test progressed.

Within 15 minutes of starting the vibrating test, volunteers were showing signs of drowsiness. Within 30 minutes, the drowsiness was significant, requiring substantial effort to maintain alertness and cognitive performance.

The drowsiness increased progressively over the test, peaking at 60 minutes.

Lead author, PhD researcher Neng Zhang, in the virtual simulator.

Associate Professor Mohammad Fard said more work was needed to build on the findings and examine how vibrations affected people across different demographics.

“We want to study a larger cohort, particularly to investigate how age may affect someone’s vulnerability to vibration-induced drowsiness as well as the impact of health problems such as sleep apnea,” he said.

“Our research also suggests that vibrations at some frequencies may have the opposite effect and help keep people awake.

“So we also want to examine a wider range of frequencies, to inform car designs that could potentially harness those ‘good vibrations’.”

Designed and developed at RMIT, the driving simulator is believed to be the only one of its kind in Australia, capable of precisely replicating the vibrations caused by driving on standard sealed roads.

The multi-axial vibration simulator uses a servo-controlled hydraulic system, with the road vibration synchronised with the driving simulator, so a volunteer being tested experiences “real-life” driving conditions.

The system can also measure several physiological parameters of the driver in real time.

The cross-disciplinary research team brought together RMIT expertise in human body vibration and automotive engineering, sleep physiology and virtual reality from the schools of EngineeringHealth and Biomedical Sciences, and Media and Communication.

The paper, “The Effects of Physical Vibration on Heart Rate Variability as a Measure of Drowsiness” (DOI 10.1080/00140139.2018.1482373, lead author PhD researcher Neng Zhang), is published this month in the journal Ergonomics.

Chief Investigators, Professor Stephen Robinson and Associate Professor Mohammad Fard.

Story: Gosia Kaszubska

Video: Kiralee Greehalgh

05 July 2018

Share

05 July 2018

Share

  • Science and technology
  • Research

Related News

Wallet-sized labs the next big thing

RMIT researchers are developing inexpensive, portable toxicology laboratories so small you could fit them in your wallet.

Five ways junk food changes your brain

We know junk is bad for us, but we eat it anyway. RMIT neuroscientist Dr Amy Reichelt explains why junk foods are refined to hit you right in the sweet spot – your brain.

RMIT and Luceda Photonics launch new photonics toolset

RMIT University, partnering with Luceda Photonics, has launched a comprehensive toolset of electromagnetic simulators for photonic devices, called REME.

Bio-inspired energy storage: a new light for solar power

Inspired by an American fern, researchers have developed a groundbreaking prototype that could be the answer to the storage challenge still holding solar back as a total energy solution.

Subscribe to RMIT NewsSubscribe
Flag Image One Flag Image Two

Acknowledgement of Country

RMIT University acknowledges the people of the Woi wurrung and Boon wurrung language groups of the eastern Kulin Nation on whose unceded lands we conduct the business of the University. RMIT University respectfully acknowledges their Ancestors and Elders, past and present. RMIT also acknowledges the Traditional Custodians and their Ancestors of the lands and waters across Australia where we conduct our business.

More information